Representing structured relational data in Euclidean vector spaces

Tony Plate

tplate@acm.org
http://www.d-reps.org
October 2004

Overview

• A general method for representing structured relational data in finite dimensional Euclidean vector spaces (“flat” vectors)
• Interesting properties: similarity, transformations, etc.
• Learning
• Relationships to structural kernel methods
• Potential large-scale benchmark problems
Motivation

• Intuition is that connectionist-style models *feel* more right than symbolic models
 – flat vector representations can capture gradations of meaning
 – have techniques for learning
 • learning the flat vector representations
 • learning to perform tasks using those representations
• Fodor & Pylyshyn had some valid points; claims:
 – compositionality is important
 • recursion, role-filler bindings
 – no good connectionist representation for compositional structure
 – any connectionist representation will be just implementation details
• Questions I tried to answer
 – how can compositional structure be represented in flat vectors?
 – is this anything more than implementation details in a symbolic system?

How to represent structured relational data in Euclidean vector spaces

• Vector space representations typically have:
 – vector addition (superposition)
 – scalar multiplication
 – distance function
 – normalization (sometimes)
• To represent structure, also need:
 – vector multiplication (for binding)
Binding to represent structure

- Consider representing relational structure, e.g., (bit fido john)
- Superposition (i.e., bite+john+fido) not suitable - loses binding info
- With a binding operation (as well as superposition) can use role filler bindings: agent * fido + object * john
- Can also represent sequences, e.g., abc: p1*a+p2*b+p3*c or a+a*b+a*b*c

Properties of binding operation

- a*b must not be similar to a or b (in contrast to superposition)
- nice if a*b is similar to a*b’ to extent that b is similar to b’
- want inverse so that a^{-1}*(a*b) = a (or approx)
- can have arbitrary numbers of roles in relations
- if a*b is a vector of same dimension as a and b can have recursive relations: (believe mary (bit fido john))
Implementing binding (multiplication)

- Holographic Reduced Representations in frequency space
- Rotor values (x_i is a complex value)
- Useful normalization is unit magnitude $|x_i|=1$
- Vector multiplication is elementwise multiplication -- addition of phase angles
 \[z = x * y \text{ if } z_i = x_i * y_i \]
 \[\alpha_z = \alpha_x + \alpha_y \]
- Superposition is elementwise addition -- corresponds to midpoint of phase angles

Summary of operations

- Vectors: elements are phase angles
- Superposition: averaging of phase angles
- Binding: addition of phase angles
- Normalization: all elements have unit magnitude
- Similarity: sum of cosines of elementwise angle differences
- Represent relational structure by superposition of role-filler bindings
- Decode structures using inverse of binding
Similar systems

• Binary Spatter Codes (Pentti Kanerva 1996)
• Multiplicative binding (Ross Gayler 1998)
• APNNs & Context dependent thinning (Dmitri Rachkovskij & Ernst Kussul 2001)

Interesting properties

• Similarity -- design representation to have desired similarity properties
• Fast (linear time) methods for:
 – Similarity (dot-product)
 – Structure transformations
 – Identification of corresponding entities
Designing similarity

- “Natural” similarity over relational structure:
 - similar entities contributes to similarity
 - similar structure contributes to similarity
 - similar entities in similar roles contributes to similarity
- Get this with role-filler binding representations, if we add in fillers:
 \[\text{bite} + \text{fido} + \text{john} + \text{agent}^*\text{fido} + \text{object}^*\text{john} \]
- Can use this scheme recursively
- These representations for hierarchical structures can model human performance on analog recall
 - similarity is sensitive to both contents and structure
 - see Plate 2003

Fast operations

- Similarity – dot product similarity reflects structural and surface similarity
- Can do structure transformations with learning or with straightforward vector algebra
 \[(\text{rel}_1 \times y) \rightarrow (\text{rel}_2 \times y \times) \]
 \[\text{agt}_1^*x + \text{obj}_1^*y \rightarrow \text{agt}_2^*y + \text{obj}_2^*x \]
 transforming vector is \((\text{agt}_1^{-1}\times\text{obj}_2 + \text{obj}_1^{-1}\times\text{agt}_2)\)
- Identification of corresponding entities
 E.g., \(x\) is involved in structure \(A\), what is in the corresponding position in structure \(B\)?
 \[(x^{-1}\times A)^{-1}\times B \]
Learning

- Theoretically easy to incorporate fixed HRR operations in neural networks
- Learning representations of tokens from data (cf sequence learning Plate 2003)
- Learning structural properties of data
- Learning transformations (cf Jane Neumann’s work, Chris Eliasmith)

Convolution kernels

- Introduced by David Haussler 1999
- Provide a similarity measure for structured objects
- Examples:
 - String kernel – similarity of two strings is proportional to number of common substrings
 - Tree kernel – similarity of two trees is proportional to number of common subtrees
- Similarity measure can be expressed as dot-product in very high-dimensional space
Convolution kernels (continued)

- This similarity measure can be computed in polynomial time (dynamic programming)
- Using Support Vector Machines, can find linear classifiers in the high-dimensional space (without ever having to explicitly construct vectors in that space)
- Interesting large scale applications: document classification, parsing, gene analysis

Relationship between HRRs & convolution kernels

- HRRs can approximate a convolution kernel
- Consider an all-substring kernels (substrings are ordered but non-contiguous)
- Two strings: abc & adc
- All-substring convolution kernel contains 11 features:
 - abc, adc, ab, ac, bc, ad, dc, a, b, c, d
 - \text{abc}: 10111001110
 - \text{adc}: 01010111011 (overlap is 3: ac, a, c)
HRR similarity \approx convolution kernel

- With HRRs, use uncorrelated high-d vectors for a, b, c, d (with Euclidean length 1)
- Represent strings as superposition of bindings of all substrings (use a non-commutative form of convolution so that $a^*b \neq b^*a$)
 \[
 abc = a^*b^*c + a^*b + a^*c + b^*c + a + b + c \\
 adc = a^*d^*c + a^*d + a^*c + d^*c + a + d + c \\
 abc \cdot adc = (a^*b^*c + \ldots + b + c) \cdot (a^*d^*c + a^*d + \ldots + c) \\
 \approx a^*c \cdot a^*c + a \cdot a + c \cdot c \\
 \approx 3
 \]
 (terms like $a^*c \cdot a^*d$ & $a^*c \cdot a$ & $c \cdot a$ are all approximately zero because of initial choice of vectors and randomizing property of convolution)

Comparison of HRR similarity and convolution kernels

- Convolution kernel:
 - each combinatorial feature in a single numeric element in a very high-d vector (discrete similarity of features)
 - vectors in high-d space usually not explicitly computed
- HRR similarity:
 - use wide pattern to represent each combinatorial feature
 - should use relatively few combinatorial features
 - computing dot-product similarity very fast
 - continuous similarity comes for free:
 - if a is similar to a', then a^*b will be similar to a'^*b
 - possible to use neural-net learning to learn representations of base vectors (by back propagating through convolution)
 - although HRR similarity only approximates the convolution kernel, it is still a valid kernel function for SVM because it is a dot product
Large scale applications

• Working on real applications has a number of advantages:
 – focuses attention on important aspects of techniques
 – allows meaningful comparison among very different approaches
 – helps to promote good approaches
• Lots of data is now available!
 – Language (textual) data
 – Biological data (genetic and gene expression)

Available data sets and applications

• Text classification
 – Reuters 21578: publically available, widely used
 – TREC data sets: yearly conferences since early 90’s, very large data sets, lots of experiments, not free
• Word sense disambiguation
 – “Senseval” project: publically available data, 3 conferences
• Parsing, e.g., using Penn Treebank and annotations
• Part-of-speech (POS) tagging: tons of data, many good systems (not perfect though)
• Predicate argument classification (e.g., PropBank project, 1m words)
• Note that SVM techniques have been applied to all the above
• Another possible application: help system for an open-source software project, e.g., statistical system R: hundreds of add-on packages, thousands of functions
Example

- Word sequence kernels (Cancedda, Gaussier, Croutte & Renders, 2003) (also see character string kernels Lodhi, Saunders, Shawe-Taylor, Christianini & Watkins, 2002)
- Applied to subset of Reuters 21578 (newswire documents with categories)
- Performance measure was recall & precision & overall measures on text classification
- Kernels were words & word substrings, with gaps
- Examples of questions addressed:
 - when using pairs of words as features, does order matter?
 - using order impairs performance
 - do higher order features (word pairs, triples) help?
 - help precision, hurt recall, hurt overall
Connections: Real HRRs = Phase HRRs

- HRRs with real values (n elements in vector)
 - normalization: normalize whole vector to have Euclidean length of one
 - element values normally distributed with mean 0 and variance 1/n
 - superposition: elementwise addition
 - binding: circular convolution (each element of z is the sum of n pairs of elements of x and y)
 - similarity: dot-product
 - If no normalization, phase HRRs (freq. domain) are equivalent to real HRRs (spatial domain) (via FFT)

Connections: Binary spatter code \{ Quantized Phase HRRs

- Kanerva’s Binary spatter code (1996)
 - binary vector elements, 50% density
 - superposition: majority function (could involve several arguments)
 - binding: exclusive-OR
 - similarity: number of matching elements
 - equivalent to phase HRRs quantized to two values: +1 and −1
Other ways of implementing binding

- Tensor products (Smolensky 1990)
 - binding is outer-product
- RAAMs (Pollack 1990)
 - roles are weight matrices
 - fillers are activation vectors
 - binding is matrix-vector multiplication
- Random Sigma-Pi networks (Plate 1994, 1998)
 - element of z is sum of n randomly selected pairs of x-y elements

Domain independent procedures for feature construction

- LSA (Latent Semantic Analysis) (Landauer, Deerswester, Dumais & colleagues)
- Constructs vector reps for words such that similar words are represented by similar vectors
- Based on principle component analysis of raw document frequency vectors: e.g. 8 documents
 - tiger: $0\ 0\ 1\ 0\ 0\ 2\ 0\ 0$: occurred once in 3rd document and twice in 6th document
 - lion: $0\ 1\ 1\ 0\ 0\ 1\ 0\ 0$: occurred once in 2nd, 3rd & 6th document
LSA continued

- Obtain more compact vector reps for words in terms of the principal components of raw feature vectors

 \[
 \begin{array}{c}
 \text{documents} \\
 \text{words}
 \end{array}
 \begin{bmatrix}
 1001020... \\
 0010021... \\
 0101210...
 \end{bmatrix}
 \]

- Ways to generalize:
 - Elements of raw representation vectors are contexts in which objects may appear
 - Use other context matrices, e.g., co-occurrence matrix

Summary

- Can represent relational structure (& nested structure) in Euclidean vector space
- Representations for composite objects are constructed compositionally
- Can capture similarity of composite objects – essential for learning
- A wide range of representational techniques
- Domain independent techniques for feature construction are available