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Definition: Convolution-Based Memory Models are a mathematical model of neural 

storage of complex data structures using distributed representations.  Data structures 

stored range from lists of pairs through sequences, trees and networks. 
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and CBMMs: information about each element of an item or region of an image is 

distributed across the entire storage medium. 

Rapidly binding components of a memory together 
CBMMs use two operations for composing patterns: superposition and binding.  For 

patterns of real numbers, superposition is ordinary element-wise addition; for patterns 

of binary numbers, superposition is element-wise binary-OR. Superposition is useful 

for forming unstructured collections of items.  However, associations or bindings 

between items cannot be represented using superposition alone because of the binding 
problem. [CROSS REF TO ARTICLE ON “BINDING PROBLEM”, and section on 

“BINDING PROBLEM” in article on “DISTRIBUTED REPRESENTATIONS”.] 

CBMMs use convolution as a binding operation: convolution binds two patterns 

together into one.  If x and y are n-dimensional pattern vectors (subscripted 0 to n-1), 

then the circular convolution of x and y, written z = x⊗ y, is also an n-dimensional 

pattern vector and has elements 
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Circular convolution can be viewed as a compression of the outer (or tensor) product 

of the two vectors, where compression is achieved by summing particular elements, as 

shown in Figure 1. (Other variants of convolution can be viewed as slightly different 

ways of compressing the outer product.) 
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One the most important properties of convolution is similarity preservation: if 

patterns red and pink are similar, then the bindings red⊗ square and pink⊗ square 

will also be similar, to approximately the same degree. 

Rapid retrieval and interference effects 
Convolution bindings can be easily decoded using inverse convolution operations. For 

example, using exact inverses, red-1⊗ red⊗ circle = circle.  However, the exact 

inverse can be numerically unstable and is not always the best choice for decoding. 

For many vectors, e.g., those whose elements have independent Gaussian statistics 

with mean zero and variance 1/n, an approximate inverse can be used.  The 

approximate inverse of x is denoted by xT
 (this notation is chosen because it is closely 

related to the matrix transpose.)  It is a simple rearrangement of the elements of x: 
T

( )modi i nx x −= . Reconstruction using the approximation inverse is noisy, i.e., 

redT⊗ red⊗ circle is only approximately equal to circle, but is usually more stable in 

the presence of noise than reconstruction using the exact inverse.  If necessary, exact 

reconstructions can be provided passing the noisy result through a cleanup memory, 

which returns the closest matching pattern among the patterns it contains. 

Decoding still works when multiple associations are superimposed.  For example, 

blueT
 ⊗  ((red ⊗ circle)+(blue⊗ square)) 

 = (blueT
 ⊗  red⊗ circle) + (blueT

 ⊗  blue⊗ square) 

≈ square. 

Because of the randomising properties of convolution, the first term on the right in the 

expansion (blueT
 ⊗  red ⊗  circle) is not similar to any of blue, red, circle, or square 

and can be regarded as noise,.  The second term on the right (blueT
 ⊗  blue⊗ square) 

is a noisy version of square.  The sum of these two terms is an even noisier, but still 

recognisable, version of square.  When larger numbers of bindings are superimposed 

together the interference effects can become significant, though increasing the vector 

dimension can reduce interference effects. For further discussion and quantitative 

analysis, see Murdock 1982, Metcalf 1982, or Plate 1994. 

TODAM 
Murdock’s (1982) “Theory of Distributed Associative Memory” model (TODAM ) is 

intended to model patterns of human performance on memorization tasks, focussing 

on tasks involving lists of paired associates. For example, a subject might be asked to 

memorize the list “cow-horse, car-truck, dog-cat, and pen-pencil” and then answer 

such questions as “Did `car' appear in the list?” (recognition), or “What was `cat' 

associated with?” (cued recall).  Subjects' relative abilities to perform these and other 

tasks under different conditions, and the types of errors they produce, give insight into 

the properties of human memory.  Some of the conditions commonly varied are the 

number of pairs, the familiarity of items, the similarity of items, and the position of 

recall or recognition targets within the list. 

The TODAM formula for sequentially constructing a memory trace for a list of pairs 

(xi,yi) of item patterns is as follows: 

1 1 2 3j j j j j jα γ γ γ−= + + + ⊗T T x y x y)(211 jjjjjj yxyxTT ∗+++= − γγγα
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where jT  is the memory trace pattern (a vector) representing pairs 1 through j (with 

0T =0 ). The scalars α, γ1, γ2, and γ3 are adjustable parameters of the model, taking 

values between 0 and 1. 

TODAM uses an “unwrapped” version of convolution which expands the size of 

vectors each time it is applied, but TODAM could use any convolution operation. 

For example, the memory trace for the list of three pairs: (a,b), (c,d), and (e,f) is built 

as follows: 

1 1 2 3

2 1 2 3 1 2 3

2
3 1 2 3 1 2 3 1 2 3

( )

( ) ( )
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γ γ γ α γ γ γ
γ γ γ α γ γ γ α γ γ γ

= + + ⊗
= + + ⊗ + + + ⊗

= + + ⊗ + + + ⊗ + + + ⊗

T a b a b

T c d c d a b a b

T e f e f c d c d a b a b

 

Item recognition is done by comparing an item with the trace: item x was stored in 

trace T if x � T > t (i.e., if the dot product of x and T is greater than some threshold t.)  

Cued recall is accomplished by decoding the trace with the cue: if item x was stored 

in trace T, then Tx# is a noisy reconstruction of the partner of x (where Tx# is 

another way of writing T ⊗x T ). 

Some of the predictions of TODAM that are supported by evidence in the 

psychological literature are as follows: 

o Performance decreases with increasing list length; 

o Cued recall is symmetric: the recall of x given y from a trace containing the 

pair ⊗x y  is as accurate as the recall of y given x from the same trace; 

o There is no primacy effect, only a recency effect, because forgetting is 

geometric in α; 

o Cued recall for a particular item can be superior to recognition for that same 

item – it can be possible to recall an item that cannot be recognized.  This is 

because weights can be defined so that associative information is stronger than 

item information. 

CHARM 
The “Composite Holographic Associative Recall Model” (CHARM) of Metcalfe 

(Metcalfe-Eich 1982) was specifically intended to address the effects of similarity 

among items in cued recall from lists of paired associates.  CHARM uses an even 

simpler storage method than TODAM – it stores only associative information and no 

item information.  The memory trace for a list of pairs (xi,yi) of item patterns is 

constructed as follows: 

1

k

i ii=
= ⊗∑T x y . 



Encyclopedia of Cognitive Science—Convolution-based memory models 

©Copyright Macmillan Reference Ltd  30 September, 2003 Page 5 

CHARM uses a truncated version of the non-wrapped convolution used in TODAM 

so that the patterns for memory traces are the same size as for items. 

As with TODAM, the process for performing cued-recall in CHARM begins by 

correlating a composite memory trace with the cue, e.g., to find the item 

corresponding to x1 in T, x1 # T is computed. The resulting pattern will be a noisy 

version of the pattern associated with x1 in T, which is passed through a cleanup 

memory. For the purposes of Metcalfe’s experiments, the cleanup memory contained 

patterns for items stored in the memory trace, and patterns for some other items not 

stored in the memory trace. 

One type of retrieval phenomena modelled with CHARM is the reduced ability to 

accurately recall items from a list whose members are similar, versus from a list 

whose members are dissimilar.  For example, performance on a pair such as 

NAPOLEON—ARISTOTLE is worse when the pair is embedded in a list of pairs of 

names of other famous people (a homogenous list) than when it is embedded in a list 

containing items conceptually unrelated to it, such as RED-BLUE. Furthermore, with 

homogenous lists, incorrect recall of an item that is similar to the correct response and 

that was also in the list with an associated item similar to the cue is a frequent type of 

error in both CHARM and with human subjects. 

Binding via full tensor products 
A list of paired items is a very simple set of relationships.  Many cognitive tasks 

demand the ability to store more complicated relationships.  For example, 

understanding language requires the ability to work with recursive structures: a phrase 

can have a verb, a subject and an object, but the object could be a phase itself, which 

could even contain further subphrases.  For example, the sentence “I believe that 

politicians will say whatever will help them to get elected” contains at least three 

levels of recursion. 

One of the first concrete descriptions of such a scheme was given by Smolensky 

(1990).  Smolensky used tensor products to bind roles and fillers together in a 

recursive manner. For example, the sentence “Politicians tell stories” could be 

represented as the rank-2 tensor ⊗ ⊗agent object� �SROLWLFLDQV WHOO ���VWRULHV WHOO , where 

politicians is a pattern representing politicians, agenttell  is a pattern for the agent role 

of “tell”, etc, and ⊗  is the tensor product (a generalization of the outer product). 

Tensors can be superimposed and decoded in a manner similar to convolution traces; 

the role pattern agenttell  can be used to decode the tensor T to retrieve the pattern 

politicians.  What makes the use of tensors interesting is that the rank-2 tensor T can 

be used as the filler in some higher-level role-filler binding, e.g., to represent the 

meaning of the sentence “I know politicians tell stories.” 

Holographic Reduced Representations 
Holographic Reduced Representations (HRRs) (Plate, 2000) use convolution-based 

role-filler bindings to construct patterns representing a recursive structures. 

The HRR for the proposition “Politicians tell stories” is constructed as follows: 
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 tell agt obj⊗ ⊗P  = tell + politicians + stories + tell politicians + tell stories  

If we have the pattern tellP  and know the role patterns, then we can reconstruct a filler 

pattern by convolving tellP with the approximate inverse of a role pattern. For 

example, agt tell⊗Ttell  P  gives a noisy version of politicians which can be put through a 

clean-up memory to provide an accurate reconstruction. 

The HRR pattern tellP  a reduced representation [CROSS REFERENCE TO 

“REDUCED REPRESENTATIONS” IN ARTICLE ON “DISTRIBUTED 

REPRESENTATIONS”] for the proposition “Politicians tell stories” and can be used 

as a filler in a higher-order proposition. For example, the HRR knowP , representing 

“Bill knows politicians tell stories” is constructed as follows: 

know tell agt obj tell⊗ ⊗P  = know + bill + P  + know bill + know  P  

Such higher-level HRRs can be decoded in the same way as first order HRRs. For 

example, the filler of the know-object role is decoded as follows: 

T
know obj tell⊗ ≈P  know  P   

This reconstructed filler is a proposition.  To discover its fillers it could be cleaned up 

and then decoded again.  

HRRs are similar if they merely involve similar entities or predicates. Because of the 

similarity preserving properties of convolution, they will be even more similar if the 

entities are involved in similar roles. Thus it turns out that the similarity of HRRs can 

reflect both superficial and structural similarity in a way that neatly corresponds to the 

data on human analog retrieval (Plate 2000). 

Implementing convolution-based memories in connectionist 
networks 

The various operations used in convolution-based memory models, i.e., convolution, 

correlation, approximate inverse, dot-product, and cleanup memory, are easily 

implemented in connectionist networks. Convolution encoding and decoding can be 

implemented by suitably connected networks of  “sigma-pi” neurons. [CROSS 

REFERENCE TO ARTICLE DISCUSSING “sigma-pi” neurons] Figure 2 shows a 

network that computes the circular convolution of two 3-element vectors. 
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   z 0  =  x 0  y 0  + x 1  y 2  + x 2  y 1   

z 1  = x 0  y 1  + x 1  y 0  + x 2  y 2   

z 2  = x 0  y 2  + x 1  y 1  + x 2  y 0   
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Figure 2: The circular convolution z of vectors x and y drawn as a network of three sigma-pi neuron.  
Each sigma-pi neuron computes the sum of three products as shown on the left. 

 

The pattern of connections in the sigma-pi network that computes circular 

convolution may seem unrealistically intricate and precise for a biological circuit.  

However, Plate (2000) shows that sigma-pi networks that sum random products of 

pairs of elements from x and y can also function as encoding and decoding networks 

with similar properties to convolution.  

For computation of similarity, a dot product can be computed by a single sigma-pi 

neuron.  Clean-up memory can be implemented in a several ways, e.g., Kanerva’s 

(1988) Sparse Distributed Memory, or Baum, Moody and Wilczek’s (1988) various 

associative content addressable memory schemes. 
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Glossary 
Neural activation#The state of activity of a neuron, often summarized as the rate 

and/or phase of firing of the neuron. 

Pattern, activation pattern#A pattern of activation across a set of neurons, often 

represented as a vector of binary or real numbers 

Trace, memory trace#The neural activations that constitute a particular memory 

Vector#A mathematical term for a list of numbers 

Binding#A record of an association between two or more concepts 


